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SUMMARY PAGE
THE PROBLEM

Legibility of head~fixed displays in some motion environments is partially depend-
ent upon visual suppression of the vestibulo~ocular reflex (VOR). This study investigates
the effects of differing relationships between peripheral background movement and whole-
body motion on the VOR and on visual performance. The purpose of the study is to ex~
plore factors in motion environments that influence performance limits and also to devel-
op procedures of potenticl usefulness in evaluating interacting visual and vestibular
function.

FINDINGS

\L/isuol performance and visual suppression of the VOR were markedly different,
depending upon the relative direction of peripheral background movement. Visual sup-
pression of the VOR and visual performance were disrupted to a far greater extent when
vestibular inputs and peripheral optokinetic inputs were discordant than when they were
concordant. Results have potential implications for head-up displays and suggest a pro-
cedure for evaluating visual/vestibular function.

Dr. Lentz held an appointment under the Postdoctoral Research Associateship Program
conducted by the National Research Council for the Naval Medical Research and
Development Command.

Dr. Jell, Department of Physiology, The University of Manitoba, Winnipeg, Canada,

during a sabbatical period worked with the NAMRL Perceptual and Behavioral Sciences
Division under the sponsorship of the Office of Naval Research.
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INTRODUCTION

Because the vestibulo-ocular reflex tends to counterrotate the eye relative to the
head and to stabilize the direction of gaze in space, visual-vestibular interactions
during natural movement typically serve to maintain clear vision for Earth-fixed targets
at peak head velocities and frequencies that far exceed the tracking capabilities of the
visual system (3). The natural and beneficial coordination of visual and vestibular func-
tions becomes potentially disruptive in aircraft or other fast-moving vehicles when the
individual's task may require data retrieval from a head-fixed display such as an instru-
ment panel during maneuvers which stimulate the vestibular system. In this situation

satisfactory data acquisition may depend upon visual suppression of the vestibulo-ocular
reflex.

Ability to suppress inappropriate vestibulo~ocular reflexes is influenced by a
number of factors, including the strength of the vestibular signal (13), the direction of
the reflexive eye movement (5), the frequency and peak velocity of head oscillation (2),
and the state of the central nervous system as it might be affected by either neurological
disorder (1,18), or mild intoxication (14). In almost all available studies of visual sup-
pression of the vestibulo-ocular reflex, vision has been restricted to head-fixed targets,
and background movement of Earth-fixed surrounds has been intentionally excluded. :
Frequently, however, individuals operating moving vehicles have tasks that require i
visibility of head-fixed visual displays while there is visible relative movement in the 3

peripheral visual JTeld. Head-up displays including helmet-mounted displays constitute i
one example.

A number of results would suggest that optokinetic stimulation acting in concert i
with semicircular canal stimulation is likely to produce a stronger oculomotor response
than would be obtained from either stimulus acting alone. For example, angular accel-
eration in darkness fo a constant velocity of 60 deg/sec typically produces a maximum
slow phase velocity of about 40 - 50 deg/sec (12), but when such vestibular stimuli are
administered with concordant optokinetic stimuli, maximum slow phase velocity is about
60 deg/sec (20). The latter response, being the stronger of the two, might be less read~
ily suppressed by introduction of a smali head-fixed display centered in the moving
(optokinetic) background. This fairly plausible presumption, however, is not necessar-
ily correct. Effects of an optokinetic background may be changed when the observer's
efforts are directed toward data retrieval from a head-fixed target. It is particularly
called into question by findings (unpublished) of Benson and Cline (4), indicating that
visual suppression of the vestibulo-ocular reflex by a head-fixed target during whole-
body oscillation was improved by low~level illumination of the surrounding room which,
by virtue of subject rotation, constitutes an optokinetic stimulus.

The present report is concerned with further study of visual suppression of the E
vestibulo=ocular reflex and visual acuity when a head-fixed display is viewed against
an optokinetic background. The purpose of the study is twofold: 1) to determine )
whether or not previcus findings (4) can be confirmed when more definitive and poten-
tially more compelling background movement is present and if so, 2) to provide a fairly

1
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simple short procedure for measuring differences in effects with differences in back~
ground movoment. In connection with the latter goal, it has been suggested that visual
motion inputs are processed by two neural systems, the one arising from foveal stimuli
and responsible for active optokinetic nystagmus (OKN) and resolution of fine detail,
and the other arising from the peripheral retina and responsible for passive OKN and
the perception of body movement in space (16,17,19). Current clinical tests (9,18) do
not address the potential role of the peripheral retina in altering visual-vestibular inter-
actions. Thus a simple short procedure for measuring differential effects of background

movement on visual suppression of the vestibulo~ocular reflex may provide refinement
of current test procedures.

PROCEDURE

The procedure involves surrounding a rotation device with stationary (Earth-fixed)
vertical black and white stripes, as illustrated in Figure 1. With a large head-fixed
display mounted on the rotation device in front of a seated subject, commencement of
rotation te the right, for example, stimulates the semicircular canals to produce nystag-
mus with slow phase left, and concordant optokinetic stimulation from the peripherally
visible Earth-fixed stripes would also produce OKN with slow phase left. However,
the subject's task is to sustain acuity for the head-fixed display, and to do this he must
suppress the vestibulo-ocular reflex as it Is influenced by the concordant optokinetic
stimulus, Then after a sufficient interval when deceleration commences, the semicir-
cular canals would generate nystagmus with slow phase right, opposite in direction to
ongoing OKN from the background stripes. As the deceleration ends, the semicircular
canal signal would be maximum and the entire field of view (head-fixed target as well
as the Earth-fixed striped background) would be stationary. Thus, peripheral optokinetic
inputs in conflict with the vestibular inputs are introduced during and for some time after
the deceleration, while the subject's task again requires visual acvity for the head-fixed
display which in turn requires suppression of the vestibulo-ocular reflex. Comparison of
the ability to sustain clear vision and suppress the vestibulo-ocular reflex produced by

the acceleration with effects produced by the deceleration provides a simple test of dif-
ferential effects of variation in direction of background movement.

SUBJECTS

Eighteen naval flight officer candidates volunteered to serve as subjects (10 sub-
jects — Experiment 1; 8 subjects —— Experiment 2). All subjects had recently passed
a flight physical examination and were in good health (corrective lens were worn by

some individuals). Subjects indicated that they were free of drugs or medication for the
24 hours preceding the testing.

METHOD

Electronystagmography was used to record eye movements. Electrodes were af-

fixed in the standard position for recording horizontal eye position and were allowed to
stabilize for 30 minutes before recording commenced.

2

e it ik WA LA s o

b o e T i, R v 0 o

R E Y

IRV .




LIS ;qm; - T T Gidais . shaald b g - -“ TE )
—
Ll
; D
, =
f L W
a
: QA o
i
E < wn
* ]
] (an R @]
L <
E T
g '
w =
% -
| = <T
— wJ
=
(.
] Q-
| o
F O Wl g
.e = > !
@ — |
5 = |
s = :
S
f = O]
{. I
= Q& '
z W 11
: Q. Wl
k S a |
‘ Figure 1
Rotation device (shaded) surrounded by vertical Earth-fixed black and white stripes. |
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nds the acuity chart, See text for dimensions.
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‘Experiment 2. The sequence of stimuli used in Experiment 1 was such that secondary nys-
tagmus from each acceleration would be directionally the same as the primary nystagmus
produced by the succeeding deceleration. It is therefore possible that primary nystagmus
during each deceleration would be augmented by ongoing secondary effects in Experiment
1. Thus, differences in responses to accelerations and decelerations in Experiment 1
could be influenced by factors other than the direction of peripheral optokinetic stimuli.
For this reason Experiment 2 was run, using the stimulus sequence shown in Figure 3B. In
this sequence, if secondary effects are estimated from an approximation of an adaptation
model proposed by Young and Oman (24), primary responses as augmented by secondary
effects would be very nearly equalized on Trials 3, 4, 7, and 8 (assuming a cupula long
time constant of 16 seconds and an adaptation time constant of 80 seconds). Comparing
Trials 3 and 7, both accelerations, with trials 4 and 8, both decelerations, yields a com-
parison of effects of differential background movement when primary and secondary ves-
tibular reactions are theoretically equivalent. Conditions in Experiment 2 were identical
with those in Experiment 1, except for the stimulus sequence.

RESULTS

Plots of changes in vision and of concomitant nystagmus slow phase velocity for Ex-
periment 1 are presented in Figure 4. During deceleration the pedk visual angle required
to sustain clear vision was more than double the corresponding measures taken during ac-
celeration, and comparable differences were present in the slow phase velocity of nystag-
mus. Subjective estimates of blurring were similarly affected (see Table I).

Results from Experiment 2 closely paralleled the findings from Experiment 1. In
Figure 5, mean responses from Trials 3 and 7, both of which were accelerations (see
Figure 3B), can be compared with mean responses from Trials 4 and 8, both of which
were decelerations. Primary responses during these accelerations (Trials 3 and 7) should
be augmented by secondary reactions from immediately preceding stimuli about as much
as the responses to the two decelerations (Trials 4 and 8) would be augmented by second-
ary reactions from their preceding stimuli. Nevertheless the resu’:: clearly show a two-~
fold quantitative difference between responses to acceleration and deceleration stimuli
much like that found in Experiment 1. Figure 6 is simply a comparison of the mean re-
sponses from all acceleration trials with the mean responses from all deceleration trials
in Experiment 2,

In both experiments the vestibular and peripheral optokinetic stimuli were direc-
tionally concordant during accelerations and directionally epposed (discordant) during
decelerations. Statistical comparisons of mean responses during accelerations with mean
responses during decelerations are presented in Table | for both experiments. Differ-
ences among retrospective estimates of blurring, visual angles required to sustain clear
vision, and nystagmus slow phase velocity were all statistically significant.

DISCUSSION

In Experiments 1 and 2, visibility of head-fixed targets varied inversely with the
.velocity of visually suppressed nystagmus. Visual performance and nystagmus suppressicn
were clearly superior when relative background movement was concordant with the
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vestibular stimulus; i.e., when the background movement would produce an OKN that
was directionally the same as the ongoing vestibular nystagmus. Experiment 2 suggaests
that these differential effects were not an artifact of augmentation of postrotatory
vestibular nystagmus by secondary nystagmus from the preceding stimulu-.

Benson and Cline (4) reported that during sinusoidal whole-body oscillation,
visual acuity for a head-fixed display viewed against an Earth~fixed visual surround
was superior to visual acuity for the same display when the observer was oscillated
while encapsulated. Our results are consistent with this previous study (4) although,
strictly speaking, our procedure did not compare fixed and moving backgrounds. The
salient feature in our findings is that when peripheral optokinetic stimull are discordant
with vestibular stimull, visual acuity (and visual suppression of the vestibulo~ocular
reflex) is substantially poorer than when optokinetic and vestibular inputs are concord-
ant.

The vestibular stimulus profile used in our study, a velocity ramp function, dif-
fers from the sinusoidal stimulus used by Benson and Cline, and it seems to afford some
advantages for observing effects of these visual-vestibular interactions. In observa-
tions preliminary to undertaking this study, we used a sinusoidal stimulus, 0.02 Hz with
peak velocity of £120 deg/sec. With low-frequency sinusoidal oscillation there is a
relatively large stimulus-response phase angle; vestibular compensatory eye velocity is
phase advanced relative to stimulus velocity as illustrated in Figure 7. The large phase
angle means that the optokinetic stimulus is never truly matched to the vestibular re-
sponse. During the stimulus cycle near peak turntable velocity the vestibular signal,
though phase advanced, Is directionally the same as the optokinetic stimulus. This
directional concordance, despite the phase mismatch, is apparently sufficient to aug-
ment visual fixation of a head-fixed target when both the vestibular and optokinetic
inputs are strong. However, the phase angle seems to introduce disruptive effects near
zero turntable velocity, approximately In the interval indicated by the cross-hatching
in Figure 7. Subjects in our preliminary runs reported slight but noticeable difficulty
in maintaining visual fixation of the head-fixed target In this interval. Any difficulty
in maintaining visual control during this interval is somewhat surprising because it is a
time in which the vestibular velocity signal is either nil (zero-crossing) or very weak.
However, it is also an Interval In which the vestibular signal is opposite in direction
to the optokinetic stimulus.

In our preliminary runs visibility of heod-fixed targets during a period of oscil~-
lation with a visible background was compared with visual performance during a period
of asclllation with the subject encapsulated to exclude background optokinetic stimu-
lation. This fairly lengthy procedure revealed effects in some subjects similar to those
reported by Benson and Cline, but In other subjects there was littie or no difference in
results with or without vistble background movement.* Aside from the formalized back-
ground, the primary difference between the test situations was the frequency of oscilla-
tion. Owur stimulus frequency, 0.02 Hz, introduced a greater stimulus-response phase

*A number of subjects achieved perfect performance scores in both conditions.

Jz

PO e iae g A e

R a4 P o S S i

et a1 e - it

3
:
|
!




SRR g T

-

R P SR

PSpoys  -syndu; s)jeunsoydo pup IDINQLISOA USIMID]G 3oUDIRYIP

J3S 06

*syndug omy ayy UIaMIaq sisIXD o1jjuco |PUo1P3IP D Yo 1ym Bulanp sewyy 3y} Juasaidal spaip

asoyd o spjaik uoypw)}1oso [op1osnuls Aouenbey-mo
Z @1nB)y

— 1NdNI - HYINGILS3A

101M4NOD  TWNOILI3NIG
- 1NdNI JIL3NINOLdO

A e bbb it b ot 4t e A T L Em e B G L a7 s e e i st il o L5 SRR Y

13

A
ite i

P

i v——
i A

h
“
i
i
i
3
!
i
i
i
]
i
;
{
3
1




angle and hence greater discordance than the stimulus (0.033 Hz) used in the initial
study (4). Moreover, the visual task (cf. 21) in our preliminary observations provided
only one response every 7 seconds, and perfect scores could be attained despite some
momentary periods of slightly blurred vision. For these reasons the visual task describad
above and the velocity ramp stimulus waveform shown in Figure 8 were adopted. A
velocity ramp stimulus with a period of constant velocity between the acceleration and
deceleration yields directionally concordant peripheral optokinetic and vestibular stim-
ulation throughout the acceleration and directionally discordant stimulation throughout
the deceleration. It is therefore a stimulus sequence that may well aczentuate response
differences under consideration. Figures 4, 5, and 6 show that vestibular nystagmus
and related visual deficits begin to increase soon after the beginning of the decelera~
tion; 1.e., before the vestibular input has become strong. This suggests that vestibular-
optokinetic directional discordance decreases ability to fixate head-fixed targets while
directional concordance may improve this ability. Hence with this stimulus profile
there may be an enhancement of the "fixation reflex" during acceleration, and there

is a weakening of flxation during deceleration.

It is well known that the vestibulo-ocular reflex plays an important role in pre-
serving visual acuity for Earth=fixed targets during head and whole=body movements (3).
However, it is to be noted that the vestibulo-ocular reflex, in order to aid in foveation
during head movement, requires adjustment, depending upon the proximity of voluntar-
ily selected visual targets. During observation of a near object, eye movements to com=-
pensate for head rotation must be greater than eye movements during observation of far
objects because the axis of eye rotation is displaced from the axis of head rotation even
in natural head movements. Therefore, it is not unreasonable to suppose that peripheral
retinal stimulation by background movement routinely alds in the adjustment of the
vestibulo~ocular reflex to the specific requirements of voluntary visual pursuit during
head and whole-body turning.

Recently there has been a strong revival of interest in the perceptual and neuro-
physiological effects of large~fleld movement. When surrounded by a large moving
field, an observer may choose to gaze inattentively at the fleld without specifically
trying to follow particular detail; under these circumstances, "passive OKN" is gen-
erated (16,17). If a small head-fixed target is placed in view in front of the moving
fleld, the observer can suppress OKN, but a compelling illusion of self-motion, called
circularvection (10,11), quickly commences. On the other hand, if the observer tries

to follow the moving visual detall, then "active OKN" develops (16,17) which Is inter-
mittently stronger than passive OKN, but the Illusion of self motion is intermittent,
develops only slowly, and is not compelling. Moreover, when vision is restricted to
moving central flelds, whole-body motion Is not perceived (6,10,11). Recent neuro~
physiological evidence indicates that large peripheral field movement induces activity
in the vestibular nuclei as though the heud were actually turning (15). It appears from
these and other considsrations that peripheral optokinetic stimulation plays a strong

role in spatial orlentation and perception of self motion, and of course that central
(macular) vision is concerned with form perception and discrimination of fine detail
(19). However, considering the probable evolutionary insignificance of the entire
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visual field moving relative to a fixed observer, it is reasonable to ask whether or not
moving peripheral images might also have some effects on foveal vision in everyday
life. The present results suggest that peripheral movement, in addition to playing a
role in the perception of body motion relative to the Earth, may serve to enhance clar-
ity of vision for voluntarily selected targets when visual and vestibular signals are con-

cordant and, conversely, may reduce clarity of vision when peripheral optokinetic and
vestibular signals are discordant.

When the head is stationary, smooth visual pursuit of a target is typically accom-
plished in everyday life against fixed backgrounds of considerable detail. For function-
al utility, visual pursuit, in which the target image remains relatively fixed on the
fovea, must operate while images of the background scene traverse the peripheral ret-
ina (cf. 22). Recent results indicate that visual pursvit of a target light against a dim
backgrot'nd of vertical stripes is better than visucl pursuit of the target light in dark-
ness (7). This suggests that when visual pursuit eye movement is to the left (counter-
clockwise), then clockwise image movement on the peripheral retina augments the
fixation of the target on the fovea; and, conversely, when voluntary visual pursult
involves clockwise eye movement, then counterciockwise image movement over the
peripheral retina augments the visual pursuit. These findings are consistent with some
observations of Hood (16), indicating that the stripes on a small optokinetic display
appear more distinct when a large striped background is moved in a direction opposite
the moving stripes of the small display. The present results are somewhat paradoxical
because we are dealing with a head~fixed target and the head is turning. When the
head turns right, the vestibulo=ocular reflex would drive the eyes left. However, the
voluntary effort is fo fixate a target that is perceived as moving rightward relative to
the Earth even though it is fixed relative to the head. According to Brewton et al. (7),
fixation of rightward-moving targets is aided by CCW background movement while fix-
ation of leftward-moving targets is aided by CW background movement. The direction
of background movement during the accelerations in our experiments was appropriate,

from this point of view, for improved fixation of the target, whereas it was inappropri-
ate during the decelerations.

Legibility of Earth-fixed targets while the head turns on the neck requires fovea-
tion of the target image while the remainder of the visual field moves over the periph-
eral retina. However, owing to displacement of the eye~turn axes from the neck-turn
axis, movement of peripheral images is not uniform even in natural head-on-neck turns;
images from objects closer to the observer than the Earth-fixed target move in one direc-
tion while Images from objects more distant than the target move in opposite direction.
If movement in the peripheral retina influences contrul of voluntary fixation, it may be
that foreground and background movements in opposite but appropriate directions would
optimize target visibility during head turns, However, if the conditions that predom-
inate in circularvection effects are also important in controlling foveation of voluntar-
ily selected targets, then background movement ("depth periphery") as opposed to fore-
ground movement may be crucial to the visual acuity effects under study herein. Fore-
ground motion, according to Brandt et al. (6), does not generate circularvection effects.
Otherwise expressed, it may be that background motion, because it generates body-
turn sensations, must be concordant with vestibular inputs to augment foveal fixation,
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and, conversely, when discordant with vestibular input, it is disruptive.

While many interpretations of these various considerations are possible, one
interesting possibility is that any sensory input, visual or otherwise, which contributes
to the perception of whole-body motion may play a role in determining which direction
of peripheral retinal motion improves or degrades voluntary efforts at foveal fixation.

It is proposed that movement over the peripheral retina inducaes the perception of whole-
body movement and also influences the "fixation reflex." Typically this peripheral
retinal movement information serves to adjust the vestibulo-ocular and colliculo~ocular
reflexes to different eye velocities required by voluntarily selected visual targets of
different distances from the subject. The efficiency of mechanisms which influence

the foveation of moving targets can be degraded by conflictual visual and vestibular
inputs and possibly by conflicts among any sensory inputs that influence the perception
of whole~body motion. In support of this argument, one of the functions of the periph-
eral retina is to detect new objects of interest in the environment, which then begets

a saccade leading to foveation of the new object. However, the direction and mag-
nitude of the saccade depend upon the direction and angular velocity of the head rela=~
tive to the Earth. Thus, sensory information indicating head velocity relative to the
Earth would be important feed-forward information for generating accurate saccades,
and the same information would be useful in maintaining foveation, once the target is

attained.

The mechanism of alteration in vision is not clear. It is possible that the dif-
ferences in acuity in the present study during concordant as opposed to discordant
visual~vestibular stimulation are primarily controlled by retinal smear which in turn
is attributable to greater nystagmus during the discordant visual-vestibular interactions.
But why is the nystagmus greater? Is it because the discordunce disrupts oculomotor
control circuits responsible for visual suppression of vestibular nystagmus, i.e., dimin~
ishes the gain of hold circuits involved in voluntary fixation, or, alternatively, is the
suppression poorer because foveal vision is reduced in some way? |f there is validity
in the latter conjecture, is the worsened foveal vision due tp some form of saccadic
suppression of vision (23), changes in accommodation (8), or is it attributable to some
change in transmission of information in the optic nerve?
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